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Abstract – Distributed multistatic active sonar net-
works provide an Anti-Submarine Warfare capability
against small, quiet, threat submarines in the harsh
clutter-saturated littoral and deeper ocean environ-
ments. Adaptive ping control techniques provide the
potential to significantly increase the multistatic net-
work’s performance, by pinging (in an optimum sense)
the right source, at the right time, with the right wave-
form. This paper describes an automatic, adaptive ping
control algorithm. It specifically addresses the “track-
hold” objective, which is to adapt multistatic sonar op-
erations to maintain and hold one or more target tracks
which have been previously initiated (detected). The ap-
proach is unique in that it includes both sonar perfor-
mance modeling and multistatic tracker outputs, in a
closed-loop control structure. The paper motivates the
approach, describes the algorithm, and shows some val-
idating results. The evaluation utilizes a simple sonar
performance model, a ping contact simulator, and a
multistatic target tracker. Results are shown for a sim-
ple simulated scenario, showing the advantages of this
adaptive ping control algorithm compared to using a pre-
planned, non-adaptive ping transmission schedule.

Keywords: Sensor management, ping management,
ping control, sonar optimization, multistatic tracking,
sonar performance modeling.

1 Introduction
Distributed multistatic active sonar networks have the
potential to increase Anti-Submarine Warfare (ASW)
performance against small, quiet, threat submarines in
the harsh clutter-saturated littoral and deeper ocean
environments. This improved performance comes
through the expanded geometric diversity of a dis-
tributed field of sources and receivers and results in
increased probability of detection, area coverage, tar-
get tracking, classification, and localization [1]. How-
ever, given the variability in environmental (acoustic)
conditions, sonar node performance (as a function of lo-
cation, time, and other parameters), and threat target

behavior, such networks will not exploit their full poten-
tial without intelligent management and control meth-
ods. Adaptive sonar control techniques and tactical de-
cision aides may be applied to best address the following
questions: Where?, Which?, What?, When?, and How?
The Where question is addressed through multistatic
sensor placement algorithms. The How question is ad-
dressed by adaptive signal and information processing
algorithms. The Which, What, and When are ap-
plicable to sonar ping control algorithms as explained
below.

• Which source(s) to transmit – The attempt is to
optimally choose which source or sources of all those
in the field are best to ping next, given the objec-
tives and current status of the ASW mission being
executed. Current methods typically employ a reg-
ular, cyclic, pre-planned ping transmission schedule,
which is often arbitrarily determined and not specifi-
cally optimized for achieving the ASW objective. An
adaptive solution will attempt to increase ASW cov-
erage, as well as consider other factors such as field
persistence and energy constraints [2, 3].

• What waveform(s) to transmit – Given environmen-
tal conditions, sonar geometry, and target behav-
ior, an optimum selection of transmission waveform
may be made. Center frequency, bandwidth, and
pulse duration are important signal characteristics
which may be controlled and optimized for the mul-
tistatic field; sonar performance modeling will enable
an optimization algorithm to make the best selection.
An important element of this is the choice between
Doppler-sensitive (eg. CW) and Doppler-insensitive
(eg. FM) waveforms. It has been shown that these
waveform types provide complementary performance
within a multistatic field [4], and therefore their se-
lection should be made in an intelligent, optimized
way.

• When to transmit the source – This may address
the operational persistence of the field, by intelli-
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gently selecting ping times to preserve sources’ energy
stores [3]. It may also provide fine-tuned ping timing
commands, which attempt to capture targets while
in (relatively rare) specular target geometries. Tar-
gets ensonified while in the specular (beam aspect)
geometry produce very loud (more than one order
of magnitude greater) detection echoes [5]. Specular
echoes have demonstrated extreme value in multi-
static data fusion, tracking, and classification algo-
rithms [6]. Adaptive ping control may attempt to
capture such opportunities through precise ping tim-
ing without which they would otherwise be missed.

In considering adaptive ping control, it is important
to understand the possible ASW objectives, or mission
modes of operation under which it may be applied.
Typical operations can be grouped into the following
mission modes:

• Target Search Mode – In this mode, the surveil-
lance operation is focused on optimizing performance
in detecting targets and initiating tracks on these de-
tections. The objective is to detect the (unknown
number of) targets in a surveillance area. This ap-
plies to monitoring a surveillance barrier for pene-
tration, or wide area search and clearing (sanitiza-
tion) missions. Intelligent ping management for tar-
get search has been addressed in the literature [2, 3].

• Track-Holding Mode – In this mode, the operation
is focused on holding tracks and maintaining good
localization estimates for targets which have already
been detected. Here, it is assumed that highly proba-
bly detection threat(s) have been detected, with con-
firmed tracks initiated, and the objective is to do
everything possible not to lose these targets. This
objective is important to enable target contact confir-
mation and classification, and to provide localization
cueing solutions to other sensors or sensor networks.
It can also contribute to targeting solutions for effec-
tive prosecution.

• Search and Hold Mode – This mode attempts to
perform the previous two modes in parallel. An op-
timization solution would need to consider both ob-
jectives, which may or may not be competing, within
the solution space.

This paper describes an automatic, adaptive ping
control optimization algorithm, which is designed
specifically to address the “track-hold” operation.
It provides a comprehensive control solution to all
three of the ping management questions in parallel:
which source to ping, what waveform type (Doppler-
sensitive continuous wave (CW) or Doppler-insensitive
frequency-modulated wave (FM)) to use, and when to
ping in order to capture high-strength specular detec-
tion echoes. The approach is unique in that it consid-
ers both sonar performance prediction modeling, and

fused multistatic tracker outputs in a closed-loop con-
trol structure. The ping control commands are gener-
ated by the control generator which takes inputs from
a simple sonar performance model [4, 7] as well as the
output tracks of a multistatic tracker [6, 8, 9]. This pa-
per proceeds as follows: Section 2 describes the adap-
tive ping control architecture, Section 3 describes the
ping control generator, Section 4 shows some validat-
ing results on a simple simulated scenario, and Section
5 provides conclusions and recommendations.

2 Adaptive Ping Control Archi-
tecture

Figure 1: Adaptive ping control architecture.

The adaptive ping control architecture is based on prin-
ciples of Feedback Control of dynamical systems with
uncertainty parameters. In this architecture, the target
information is obtained by sensor measurements and
processed by the tracker and the control generator, and
the processed information is then fed back to the sensor
network for improved tracking. A diagram of the adap-
tive ping control architecture is shown in Figure 1. This
architecture consists of four main modules: Sonar Per-
formance Model, Ping Contact Simulator, Multistatic
Target Tracker, and Ping Control Generator. The sonar
performance model (SPM) computes mean signal-to-
noise ratios (SNR) or signal excesses (SE) for given
field configurations, consisting of sources, receivers and
moving targets. The ping contact simulator generates
contacts which represent true (target-originated) and
false echo detections at each receiver for each processed
sonar ping. The multistatic target tracker computes
current and future state estimates based on sensor data
and target and measurement uncertainty and produces
tracks. The ping control generator generates ping com-
mands as a function of the tracker’s current state esti-
mate and predictions (future state estimates), control
parameters, and sonar performance model predictions.
We briefly describe the sonar performance model, the
ping contact simulator, and the tracker in the follow-



ing subsections and the control generator is discussed
in detail in Section 3.

2.1 Sonar Performance Model

The sonar performance model provides mean levels of
SNR, which are used by the ping control generator, and
is an essential element of the ping control simulation
module. Accurate modeling of sonar system perfor-
mance is non-trivial, given the complexity and uncer-
tain knowledge of the underwater acoustic environment.
Here, we choose to use a simple bistatic sonar perfor-
mance model [4], which is sufficient in capturing the
gross features important to this analysis. Future stud-
ies may incorporate higher fidelity acoustic sub-models
into the approach, as needed. A wholly reverberation-
limited shallow water environment is assumed, being
dominated by sea bottom reflections. Transmission
losses to/from the target and the bottom underneath
it are assumed equivalent. CW and FM waveforms
are modeled using their respective Q-functions (descrip-
tions of their performance against reverberation) [4].
Aspect-dependent Target Strength is modeled, and in-
cludes high-strength echoes when the target is in the
specular condition [7]. The specular geometric con-
dition occurs when the angles from the target to the
source and receiver are equal (fore and aft, or, aft and
fore) from the target’s beam angle (±90◦ from the tar-
get’s heading). Levels of mean SNR for a single ping
received by the entire field are output, given bistatic
source-receiver geometries, assumed target speeds and
headings, and other parameters.

2.2 Ping Contact Simulator

A simulator is required in order to test and evaluate the
ping control algorithm. This module provides contact
(scan) files for each receiver, given a waveform trans-
mission from a particular acoustic source. The modeled
contacts consist of both target-originated contacts and
false alarm contacts, and the resulting scan files may be
input into the multistatic tracker. The simulator may
be driven by the adaptive ping control algorithm, or
by a pre-planned ping schedule (which may be done to
provide a comparison baseline). Each contact contains
the following information: source and receiver identi-
fication, waveform type, ping time, SNR, bearing, ar-
rival time (for ranging), and range-rate (if CW). Target
contacts are derived from a manufactured scenario of
target truth trajectories. They are modeled by obtain-
ing mean SNR from the sonar performance model, and
adding a random fluctuation term (σSE) from a Gaus-
sian distribution (nominally 0 mean and 5 dB fluctua-
tion), along with assumed measurement (bearing, time,
and range-rate) errors. A number of false target con-
tacts (nominally 50) are generated for each sonar scan,
with a uniform distribution in time-bearing measure-
ment space, and a Gaussian distribution for bistatic
range-rate. For this study, false contact SNRs were

modeled assuming a Gaussian distribution (nominally
12 dB mean and 5 dB fluctuation).

2.3 Multistatic Target Tracker

The multistatic tracker generates target state estimates
from measurements and associates target contacts to
form tracks. In this work, we use a centralized, Kalman
Filter tracker [6, 8]. The input to the tracker is a se-
ries of contact files (measurement scans), unique to each
source-receiver-waveform and time of ping transmission
provided by the ping contact simulator. Target mo-
tion is modeled using a 2-dimensional nearly constant
velocity motion model. Converted, de-biased posi-
tional measurements are used together with range-rate
measurements in an extended Kalman Filter (EKF).
A logic-based track initiation (M/N) and termination
(K) scheme is used. Nearest neighbor data associa-
tion is used, with a 2-dimensional or 3-dimensional (if
Doppler measurements are available) ellipsoidal asso-
ciation gate. Target state updates for the track-set
selected for holding are provided to the ping control
generator. The improvements in target holding seen at
the output of the tracker is a measure of the success of
the ping control algorithm.

3 Ping Control Generator
The ping control generator uses current and future
state estimates from the tracker, the sonar performance
model, and control objectives to derive an optimal ping
command which consists of source, waveform, and ping-
time selection. In this formulation, we consider only the
track-holding scenario, where confirmed tracks have al-
ready been established by the tracker. The objective of
the control generator is to maximize the instantaneous
detection probability of the target tracks at the input
and output of the tracker for effective holding of the
targets. The strategy is to focus on regions of the state
space with higher likelihood of future target presence
and maximize the target detection probability by intel-
ligent ping management. This approach is illustrated
in Figure 2.

3.1 Variable Ping Interval

The current ping time is denoted by tk. We define
the minimum and maximum ping intervals, ∆tmin and
∆tmax. We consider a forecast window of width T
with time increment ∆T and the forecast time tp ∈
{tk + ∆tmin, tk + ∆tmin + ∆T, · · · , tk + ∆tmin + T}.
The next ping time, tk+1, is selected from the set
{tk + ∆tmin, tk + ∆tmin + ∆T, · · · , tk + ∆tmax}. The
descriptions of the time variables mentioned above are
given in Figure 3. Here, we consider up to the time
∆tmax + ∆tmin from the current ping time, tk, because
there is a minimum lock-out period ∆tmin required be-
fore generating the next ping to wait for sonar ping
returns and to conserve available energy of the sources.



Figure 2: A depiction of the approach.

If the best ping interval, t∗p, is predicted to fall between
tk+∆tmin and tk+∆tmax, the next ping time is set to t∗p.
If t∗p falls between tk + ∆tmax and tk + ∆tmax + ∆tmin,
we select the best next ping time, tk+1, from the set
{tk+∆tmin, tk+∆tmin +∆T, · · · , tk+ t∗p−∆tmin}. The
variable ping interval mechanism allows the fine tuning
of the ping time in order to capture the specular geo-
metric condition which occurs fleetingly. Although the
specular geometry is rare, when this configuration oc-
curs, it yields a very high strength target echo relative
to other geometries, and therefore should be exploited
when a specular opportunity is expected [5].

Figure 3: Variable Ping Interval.

3.2 Track Forecast

For each forecast time, tp, the optimal estimate (under
linear Gaussian assumptions of Kalman filtering) of the
target state and its covariance matrix are predicted by
the multistatic target tracker as [8]:

X(p|k) = Φ(tp − tk)X(k|k), (1)

P (p|k) = Φ(tp − tk)P (k|k)ΦT (tp − tk) +Q(tp − tk),
(2)

where X(k|k) = [x̂(tk), ŷ(tk), ˆ̇x(tk), ˆ̇y(tk)]T is the state
estimate (position and velocity in the Cartesian coor-
dinate system) at time tk and P (k|k) is its error co-
variance matrix, Φ(tp − tk) is the discrete-time state

transition matrix from time tk to tp, and Q(tp − tk)
is the covariance matrix associated with the zero-mean
white Gaussian noise process for a nearly constant ve-
locity target motion model. X(p|k) is the linear opti-
mal prediction at tp and P (p|k) is the error covariance
matrix associated with X(p|k).

3.3 Discretization of Likelihood Region

At each forecast time, the likelihood region of target
state is described by the hyper-ellipsoid which is defined
by the eigenvalues of the covariance matrix P (p|k). In
order to characterize the target state within the hyper-
ellipsoid, we discretize the ellipsoid into a 4-dimensional
grid {Xi = (xi, yi, ẋi, ẏi), i = 1, · · · , Np

L}, where Np
L is

the total number of grid cells in the likelihood region at
time tp. We use a 3σ likelihood region at each forecast
time which corresponds to a target state probability
(1 − α) of 99%. The contour delineating the region of
constant probability α about X(p|k) is given by the
value of a chi-square random variable z with 4 degrees
of freedom which satisfies

P
(
z ≤ χ2

4(α)
)

= 1− α. (3)

3.4 Optimization Criteria

To perform optimum track-holding, we choose a ping
command, u (source, waveform, ping time), that maxi-
mizes the instantaneous probability of target detection
at the tracker input weighted by the probability of tar-
get presence and the tracker association probability due
to false alarms. The optimization criteria for each tar-
get state grid cell of each active track at each forecast
time is given by

PTR(Xi, X
R
j , u) = PT (Xi)× PD(Xi, X

R
j , u)× PA(u),

(4)
where PTR(Xi, X

R
j , u) is the grid cell probability that

the tracker will associate the target-originated detec-
tion by receiver j if action u is taken and the target
state is Xi; X

R
j = (xRj , y

R
j , ẋ

R
j , ẏ

R
j ) denotes the state

of receiver j. PT (Xi) is the probability that the target
state is Xi. PD(Xi, X

R
j , u) is the probability of detec-

tion at the tracker input corresponding to XR
j , if the

target state is Xi and action u is taken. PA(u) is the
probability of tracker association of a target-originated
detection if action u is taken for a given false alarm
rate. Each probability in Eq. (4) is defined as follows:

• Probability of target state – The density func-
tion for the target state Xi at tp is given by the
quadravariate normal distribution with mean vector
µ = X(p|k) and covariance matrix Σ = P (p|k) com-
puted by the tracker as

f(Xi) =
1

(2π)2
√
|Σ|

exp

[
−1

2
(Xi − µ)TΣ−1(Xi − µ)

]
.

(5)



The probability of the target state being within each
grid cell PT (Xi) is obtained by integrating the den-
sity function over the grid cell.

• Tracker detection probability – For each tar-
get state Xi, the corresponding mean SNR for each
source-receiver-waveform triple is computed using
the simple sonar performance model as described in
Section 2.1. The mean signal excess, SE (in dB), is
computed as the difference between the mean SNR
and the tracker classifier threshold (TH). We model
the signal excess fluctuations by a normal distribu-
tion function, with standard deviation σSE of about
its mean SE. The relationship between signal excess
and detection probability for the normal fluctuation
model is given in [10]. The detection probability is
approximated by a simpler expression as

PD(Xi, X
R
j , u) =

1

2

(
1 + erf

(
SE

(
Xi, X

R
j , u

)
√

2σSE

))
.

(6)

• Tracker association probability – After each ping
time, multiple contacts are generated at each re-
ceiver, the collection of which are called a scan, due to
a given false alarm rate. For each scan, a validation
gate centered around the predicted measurement of
the track is set up to select the correct measurement
from the target probabilistically. We compute the
area of validation gate at each forecast time, since
the validation gate gets larger and the number of
false alarms in the validation ellipsoid increases as
the forecast interval increases. In order to account
for increased uncertainty at later forecast times, we
include the track association probability in the opti-
mization criteria (4). We make the following assump-
tions to simplify the computation of PA: (1) the false
alarm rate is constant at each scan, (2) false alarms
are distributed uniformly in the area Aτ defined by
the bistatic ellipse formed by the source and receiver
pair in consideration and the listening-time parame-
ter, (3) any measurement within the validation gate
can be associated by the tracker with equal probabil-
ity, and (4) there is one target-originated detection
in the validation gate (due to a 99% validation gate).

The error ellipsoid associated with each fore-
cast is given by the covariance matrix S(p) =
C(p)P (p|k)CT (p) + R(p), where C and R are the
corresponding Jacobian measurement matrix and the
measurement error matrix, respectively [6, 8]. For
an FM source, S ∈ R2×2 and for a CW source,
S ∈ R3×3. Let A denote the cross-sectional area of
the error ellipsoid defined by S. The total number
of false alarms per scan is denoted by Nfa. We use
superscripts fm or cw to denote an FM or CW wave-
form, respectively. The tracker association probabil-

ity for an FM source is approximated by

P fmA =
1

1 +Nfm
fa ·Afm/Aτ

. (7)

For a CW source, we model the bistatic range rate of
false alarms, denoted by r̃, by a normal distribution
with density f̃(r̃) and assume false alarm range rate
is independent of positional measurements. We ap-
proximate σxr̃ and σyr̃ of Scw to be zero. The tracker
association probability for a CW source is approxi-
mated by

P cwA =
1

1 + F ·N cw
fa ·Acw/Aτ

, (8)

F =

∫ ¯̃r+c

¯̃r−c
f̃(r̃)dr̃, (9)

where ¯̃r is the expected value of target range rate
and c is the length of semi-axis of the error ellipsoid
corresponding to the bistatic range rate.

3.5 Objective Function

The objective of the control generator is to choose
the next ping command (source, waveform, ping time)
which maximizes the tracker’s detection performance
metric. The metric includes the case of multiple ac-
tive tracks. For each active track forecast and each
receiver, we compute the total sum of grid cell (tracker
detection) probability within the error ellipsoid defined
by P (p|k). The maximum is selected amongst all re-
ceivers, weighted, and then summed over all the active
tracks. The potential ping command with the maxi-
mum performance metric is chosen. The performance
metric is given by

gm =

NTR∑
q

βq(k) max (h1, h2, · · · , hNR
) , (10)

hj =

(Np
L)q∑
i

P qTR
(
Xi, X

R
j , um

)
, (11)

um ∈ {(source,waveform,ping time)}, (12)

where NTR is the number of active tracks to hold at
the current time tk, NR is the number of receivers, and
βq(k) is the weighting parameter for each active track
q at tk, and (Np

L)q is the total number of grid cells in
the likelihood region associated with track q at time tp.
The weighting parameter βq(k) is computed as

βq(k) = Lq(k)

(
1−

d̄2
q(k)∑NTR

i d̄2
i (k)

)
, (13)

where Lq(k) is the length of the active track q at time
tk and d̄2

q(k) represents the normalized, averaged norm
of the residual of the track q weighted by the corre-
sponding covariance matrix Sq(i), i = 1, · · · , k at each
ping time, ti.



In Eq. (10), we choose the maximum total detection
probability resulting from all receivers in order to em-
phasize the specular geometric opportunity. One could
also choose the average value over all or a set of re-
ceivers if cross-fixing is considered in the tracker.

4 Simulation
The use of different waveforms within a geographically
distributed multistatic network offers diversity in tar-
get tracking opportunities [4]. Targets traveling with
a heading along (or tangential to) the bistatic equi-
time ellipses present a specular condition with a large
enhancement of target strength, but a zero-Doppler
shift to the source-receiver pair. On the other hand,
targets traveling with a heading orthogonal to the el-
lipses present the maximum target Doppler shift to
the source-receiver pair, but a relatively low target
strength. In this section, we demonstrate the exploita-
tion of waveform and geometric diversity for tracking by
adaptive ping control which includes source, waveform,
and ping time selection. We present two simulation
examples: the first example is simulated without any
false alarms and without target SNR fluctuations, and
the second example with false alarms and with target
SNR fluctuations.

Figure 4: Tracking result with the pre-planned schedule
for no false alarm case.

4.1 Example 1: No false alarm

In this example, there are 2 sources and 1 receiver de-
ployed in the field and their positions are stationary.
A target of interest is heading north with a constant
speed of 5 knots. The scenario is illustrated in Fig-
ure 4. The input parameters for the tracker are as fol-
lows: M = 3, N = 4 for track confirmation, K = 2 for
track termination, association gate value (1−α) = 99%,
tracker classifier threshold TH = 10 dB, maneuver-
ability index of 0.01 m2/s3, error of receiver bearing
of 2◦, error of receiver timing of 0.02 seconds, error of

Figure 5: Tracking result with the adaptive schedule
for no false alarm case.

bistatic range rate of 0.1 m/s, and error of speed of
sound of 15 m/s. Figures 4 and 5 show the tracking
results with a pre-planned schedule and an adaptive
ping schedule, respectively. The pre-planned schedule
is given by a simple round-robin scheme in which each
ping is generated from the source and waveform combi-
nation of {(S1,FM),(S2,FM),(S1,CW),(S2,CW)} with
a constant ping interval of 60 seconds. With the pre-
planned schedule in Figure 4, we can see that it results
in fragmented target tracks. We initiate the adaptive
schedule scheme with the pre-planned schedule until
there is a confirmed track. The minimum and maxi-
mum ping intervals for the adaptive scheme are set to
60 seconds and 90 seconds, respectively, with a 15 sec-
ond increment. The adaptive schedule scheme not only
continuously holds the target without fragmentation,
but provides higher detection SNRs to the tracker.

Figure 6: Mean SNR levels of true target generated by
each source and waveform combination.

Figure 6 shows the mean SNR levels (prior to the



Figure 7: Comparison of the tracker input mean SNR
(without fluctuations) resulting from the pre-planned
schedule and the adaptive schedule.

Figure 8: Adaptive ping schedule for no false alarm
case.

addition of SE fluctuations) of the true target track
for each source and waveform combination. We see
two specular opportunities, first with Source 1 (∼ 900
sec) and later with Source 2 (∼ 2250 sec). Away from
the specular, the CW provides better echo strength.
We expect the adaptive ping algorithm to automati-
cally exploit these trends. Figure 7 shows the com-
parison between target-originated mean SNR using the
pre-planned schedule and the adaptive schedule. We
see that the adaptive schedule captures both specular
events where the pre-planned schedule only partially
captures one. In addition, the average increase in mean
SNR is about 4 dB for this case. The resulting adap-
tive schedule is shown in Figure 8. As expected, the
FM waveforms is more often selected during the mid-
dle of the run, including the period when the specular
detections occur. At the beginning and end of the run
the CW is more prominent. Also, Source 2 is selected
more often at the beginning and Source 1 at the end, in
accordance with the target’s Doppler presented to the
respective sources as it moves along its track.

4.2 Example 2: With False Alarms

In this example, we simulate the same scenario with the
same parameters as described in the previous example,
except we generate 50 false alarms per scan for both FM
and CW pings and add target SNR flucations (σSE = 5
dB). The false alarm generation is briefly described in
Section 2.2.

Figure 9: Tracking result with the pre-planned schedule
for 50 false alarms per scan case. Note that only 3 out
of 11 false tracks are present in the region displayed.

Figure 10: Tracking result with the adaptive schedule
for 50 false alarms per scan case. Note that only 5 out
of 12 false tracks are present in the region displayed.

The simulation results are shown in Figures 9 - 12.
We observe that with false alarms, some false tracks
are confirmed. However, they are eventually rejected.
Here again, the pre-planned schedule results in frag-
mented target tracks. Even with false tracks, the adap-
tive schedule scheme results in the continuous holding
of the target track, although the second specular op-
portunity is missed. This may be due to the effect
of multiple active tracks, SE fluctuations, and/or ping



time interval and grid size resolutions. Nevertheless,
the benefit and potential of the adaptive ping control
algorithm is clearly seen. For more realistic and chal-
lenging scenarios, we expect the algorithm to provide
additional improvement in track-hold time, along with
the tracker’s fragmentation reduction shown here.

Figure 11: Comparison of the tracker input SNR (with
5 dB fluctuations) with the pre-planned schedule and
the adaptive schedule for 50 false alarms per scan case.

Figure 12: Adaptive ping schedule for 50 false alarms
per scan.

5 Conclusions and Future Work
We have presented an adaptive ping control frame-

work for the track-holding scenario. Our main objec-
tive is to improve the tracker’s performance by provid-
ing better signal excess at the tracker input through
adaptive ping management. The formulation considers
the aspects of the specular condition and Doppler infor-
mation, by source and waveform selection and variable
ping time interval. We also include sonar performance

model, multistatic target tracker and ping contact sim-
ulator in our adaptive control architecture. The simula-
tion examples illustrate the benefit of the adaptive ping
schedule scheme and the viability of the approach. Fu-
ture work will focus on comprehensive statistical Monte
Carlo evaluation on a large multistatic field. We antici-
pate the need for intelligent grid-size selection and ping
interval selection for more efficient computation.
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